
Chemical Solvers

Oliver Wild
Lancaster Environment Centre

UKCA Training Workshop, Cambridge, Jan 2018

How can we model chemical processes?

Time

Concen-
tration

?

A

B

Chemical Reaction Kinetics

aA + bB cC + dD

rate = k [A]a [B]b

Rate constant

d[C]
dt

Reaction rate

-d[A] c
dt a=

Concentration
of reactants

Chemical Reaction Kinetics

aA + bB cC + dD

rate = k [A]a [B]b

NO + O3 NO2 + O2

d[NO]
dt = - k [NO] [O3]

Example:
k

Differential equation …

Ordinary Differential Equations

• Chemical kinetics leads to a system of coupled ODEs
• These need to be solved simultaneously

A B C
k1

k2

k3

d[A]/dt = -k1[A] + k2[B]

d[B]/dt = k1[A] – (k2 + k3)[B]

d[C]/dt = k3[B]

A C

B

time

d[A]/dt = -k1[A]

d[A]/[A] = -k1 dt

[ln(A)] = -k1[t]

ln(At/A0) = -k1(t-t0)

At = A0 e -kt (for t0=0)

Solving ODEs by Numerical Integration

• First-order loss gives simple exponential decay
• Full chemistry ODEs generally can’t be solved analytically

A B
k1

A0

time

At
A0

t
t0

At

tt0

At

A0

t

t0

Euler Method

• Simple and easy to apply
– Evaluate gradient at current state
– Move forward in time
– Re-evaluate gradient at new state
– Repeat…

• Small time steps for accuracy
• Problems with instability

– May get oscillations
– Doesn’t always converge

• Improvements
– Midpoint method
– Backward Euler (Implicit) dA/dt = -2.3A

A0

A1

A2 A3 A4

d[A]/dt = -k1[A]

ΔA = -k1AΔt

time
3
2
1
0

-1
-2
-3
-4 0 1 2 3 4 5

Explicit vs. Implicit Methods

• Explicit methods
– Calculate state of system at later time from state at current time
– A(t+Δt) = F(A(t))
– Advantage: easy to implement
– Disadvantage: need very small Δt if equations are stiff

• Implicit methods
– Use both current state of system and later one
– G(A(t),A(t+Δt)) = 0
– Disadvantage: extra calculation required to solve eqn.
– Advantage: can use much larger time steps; more stable

Best approach to use depends on the problem to be solved
Stiffness important; often a trade-off of accuracy vs. stability

Backward Euler Method

• Use gradient at final state
An+1 = An + f(tn+1,An+1)Δt
e.g., A1=A0-kA1Δt

• A1 appears on both sides, so
need to solve equation

• Typically set A1 = A0 and then
re-evaluate until it converges
– Newton-Raphson iteration

• Stable approach
– Good for stiff systems
– Can take large steps

A0

A1

time

d[A]/dt = -k1[A]

Find An+1 such that
An+1-An-f(tn+1,An+1) Δt = 0

Newton-Raphson Iteration

• Find root of function (y=0): take first guess, calculate gradient,
find x-axis crossing point, then repeat iteratively…

(need a good first guess or may fail to converge in some cases)

Animation from http://en.wikipedia.org/wiki/Newton’s_method

Other Integration Methods

• Adams-Bashforth
– Explicit, linear multi-step methods

– A=A0-kA0Δt A1=A-(1.5kA-0.5kA0)Δt

• Runge-Kutta methods
– Iterative, implicit or explicit methods

– A1=A0+(y1+2y2+2y3+y4)*Δt/6

• Gear methods (backward differentiation formulae)
– Implicit, linear multi-step methods

– Commonly used in, e.g., SVODE, smvgear

• Rosenbrock solvers
– Multi-step methods, similar to Runge-Kutta

– e.g., RODAS

Read a good book on Numerical Methods to learn more!

Stiffness

Equation systems may be stiff when
– some species decay much more rapidly than others
– the step length is constrained by stability rather than accuracy
– there is strong coupling between different species

We can often alter the stiffness of a system by putting species in
steady state or in chemical families

If a numerical method with a finite region of absolute stability, applied to a
system with any initial conditions, is forced to use in a certain interval of
integration a step length which is excessively small in relation to the
smoothness of the exact solution in that interval, then the system is said to
be stiff in that interval. J.D. Lambert

Steady State and Chemical Families

• Steady State
A B C if k2 >> k1 B removed as soon as formed

If no other reactions, B quickly reaches equilibrium (steady state)

Ø d[B]/dt = k1[A] –k2[B] = 0 so [B] = (k1/k2)[A]
Ø d[C]/dt = k2[B] = k1[A] as k1 is the rate limiting step

Don’t need to solve for [B] if k2 very fast – just function of [A]

• Chemical Families
O2 O O3 O2 if k2,k3 >> k1,k4

Interconversion of O and O3 very fast – treat as a single family, Ox

Ø solve for Ox based on k1 and k4

Ø derive O and O3 from Ox based on ratio of k2 and k3

k1 k2

k1
k2 k4

k3 Ox

What should we include in our chemistry?

Atmospheric oxidation of CH4 species lifetime

CH4 + OH CH3 + H2O τ ≈ 10 yrs

CH3 + O2 CH3O2 τ ≈ 1 ms

CH3O2 + NO CH3O + NO2 τ ≈ 100 s

CH3O + O2 HCHO + HO2 τ ≈ 1 s

HCHO + OH CO + H + H2O τ ≈ 1 day

HCHO + hν CO + 2H
CO + OH CO2 + H τ ≈ 3 months

H + O2 HO2 τ ≈ 1 ms

What should we include in our chemistry?

Atmospheric oxidation of CH4 species lifetime

CH4 + OH CH3 + H2O τ ≈ 10 yrs

CH3 + O2 CH3O2 τ ≈ 1 ms

CH3O2 + NO CH3O + NO2 τ ≈ 100 s

CH3O + O2 HCHO + HO2 τ ≈ 1 s

HCHO + OH CO + H + H2O τ ≈ 1 day

HCHO + hν CO + 2H

CO + OH CO2 + H τ ≈ 3 months

H + O2 HO2 τ ≈ 1 ms

Drop the very fast reactions and very short-lived species, replacing the latter
with their ultimate oxidation products (e.g., HO2 for H)

ASAD Chemistry Package

• Framework for including chemistry schemes in models
– Contains choice of numerical integration package
– Independent of chemistry scheme
– Solve simultaneous differential equation for each species, y:

– Typically treat emissions (E) and deposition (D) outside ASAD

ASAD Framework

• Set up chemistry
– Read species and reaction variables
– Initialise arrays for production and loss terms

TR = tracer
SS = steady state
CT = constant

Bimolecular Reactions

Arrhenius equation

Termolecular Reactions
(and unimolecular decomposition)

or

Photolysis

• Photodissociation processes
important for many species

• Not part of ASAD, calculated
using Fast-Jx based on
– Absorption x-section
– Actinic Flux, hν

accounting for:
– Solar zenith angle
– Wavelength dependence
– Scattering and absorption by

molecules, aerosol, clouds
– Surface albedo

ASAD Framework

• Set up chemistry
– Read species and reaction variables
– Initialise arrays for production and loss terms

• Loop over chemical time step
– Collect concentrations (molecules/cm3)
– Calculate rate constants (based on temperature, etc.)
– Integrate chemistry ODEs

• Calculate production and loss rates
• Integrate with chosen integration scheme

– Determine new concentrations

Chemical solver

Coding ODEs

Production and loss rates
• All species hard-wired
• All reactions hard-wired

• Needs to be hand-written
• Not very flexible!

Two innovations
• Machine-written code

– Simpler to make changes

• Symbolic arrays
– Increased flexibility

ODEs

Backward Euler Scheme with N-R Iteration

• Build Jacobian
– Matrix of first-order partial derivatives

– This defines system of coupled nonlinear equations

• Solve JF (xn)(xn+1 – xn) = – F(xn)
– Solve for (xn+1 – xn) This is our An+1-An term from earlier

• Use Gaussian Elimination (LU factorization with partial pivoting)

– Forward elimination: rearrange rows to form a triangular matrix

– Back substitution: continue row operations to solve

– Speed this up using a sparse matrix approach
• Only operate on non-zero elements to reduce computational demands

Jij = "#$
"%&

Backward Euler Scheme with N-R Iteration

• Build Jacobian
• Make first guess at new concentrations: x1 (use Euler method)
• Iteration loop

– Calculate rates of change: dx/dt
– Calculate residual term to minimise: (x1-x0)- dx/dt.Δt
– Check for convergence within specified tolerances
– Rebuild Jacobian
– Solve by Gaussian Elimination: (x1-x0)
– Check for any problems (slow convergence, divergence, etc.)
– Update concentrations: x1

• If no convergence, retry with reduced time step
• Otherwise, conclude successfully

Integration Scheme Features

• Solution time roughly linear in number of entries in Jacobian
– Previously proportional to square of number of species

– Adding a few species or reactions shouldn’t affect time much…
… unless new species coupling increases number of iterations needed

• Should converge in 5-7 iterations in most cases
– Initial iterations damped to accelerate convergence (?)

– Maximum number of iterations limited (drop out if too many!)

– Halving time step improves convergence (load balancing issues?)

– Can alter tolerances, but do so with care!

• Efficiency improved by working on multiple grid cells at once
– Optimized for vector processing

What do I need to know to run UKCA?

• In most cases: almost nothing!

• Requirements for new chemistry in ASAD

– How to add new species and new reactions (see tutorial)

• The NR chemical solver is very robust, but note:

– Increased stiffness (v. short-lived species) may give convergence issues

• Consider if short-lived species needed, or if they should be in steady state

– New steady state species may require additional work

• Rates need to be included in Jacobian (tweaking may be necessary!)

• If you’re interested in numerical methods, you’re welcome

to dig a little deeper into these parts of UKCA…

References

Numerical Recipes in FORTRAN 77: The Art of Scientific Computing
W.H Press et al., Cambridge University Press, 1992 (2nd ed)
ISBN: 978-0521430647 (newer editions and other languages available)

Numerical Methods for Partial Differential Equations,
G. Evans, Springer, 2000
ISBN: 978-3540761259

Numerical Methods for Scientists and Engineers,
R.W. Hamming, Dover Publications, 1987
ISBN: 978-0486652412

Numerical Methods in Scientific Computing,
J. van Kan, F. Vermolen, and A. Segal, VSSD, 2006
ISBN: 978-9071301506

